

Why Does CCA Matter at the State and Local Level?

Gerry Braun California CCA Forum Los Angeles, California May 19, 2015

Why Does CCA Matter at the State and Local Level?

CCA is a feasible, efficient, adaptive model for local management of accelerating and unstoppable energy sector change.

Why Is Energy Sector Change Accelerating and Unstoppable?

	US	СА		
2014E	6.5GW	3.3GW		
Residential	20%	25%		
Non-Res	30%	10%		
Utility	50%	65%		
2018E	9GW	3.1GW		
Res	35%	60%		
Non-Res	35%	25%		
Utility	30%	15%		

New US Solar PV Capacity (GW)

Modular clean energy technologies like wind, solar, EV batteries and fuel cells have manufacturing scale economies and lower project finance risk.

Why Flexible, Efficient, Adaptable Local Change Management?

Local Electricity Supply Opportunities

- Use of City GIS Systems for Energy Planning
- Net Zero Residential Retrofit
 Program Design
- Community Solar and Wind Sites
- Rooftop Solar Thermal Sites

Clean energy supply and storage technologies are best deployed locally, where there are opportunities for additional cost savings and macro-economic benefits.

What is the State's Interest? Local Integrated Analysis/Planning

Trends Integrated Model Local Power Scenarios Supply/Demand Balancing Scenario Comparisons

Subsidiarity is an organizing principle that matters ought to be handled by the smallest, lowest or least centralized competent authority.

Integrated Resources Network

What is a City's or County's Interest?

Transformational Local Electric System

Establishing an effectively governed and competent authority to handle energy matters and reduce costs and GHG emissions.

Competent in what essential disciplines?

Multi-directional power flows & multilevel planning and integration

Competent to evaluate local needs and opportunities and adapt the basic CCA model to deliver "integrateddecentralized" energy service. The same principles apply to local electric system integration as to regional.

Why Locally Planned and Integrated?

Each California community has unique goals/priorities, energy usage and prosumer trends, plus local siting/resource opportunities.

Integrated Energy Analysis

Baseline & Trends

Reference Case

Reference Case Building Usage

e Case Local I

Davis Energy Profile - 2012 Table 2. Usage Table 3. Costs and Carbon Davis Costs and Emissions - 2012 Davis Energy Usage - 2012 Annual Carbon GWh GWh Energy Bill Footprint **Building Electricity** 282 Smillions Metric Tons Residential 144 Non-residential 138 Electricity 43.5 Building Natural Gas 120 Natural Gas 16.4 63496 Transportation Residential 88 Light vehicles 23.1 59251 31 Non-residential Heavy truck Transportation Fuels 84 84 231419 Total 486 486 Note: End use rather than source energy metrics were used consistently

throughout the model and analysis.

Integrated Resources Network

Local Renewable Power

Davis Solar Electricity Deployment Status		Yolo County Renewable Power Statu	
	2012	2015	2012 2015
Sites	1039	1800	Annual GWr
Cumulative Capacity (MW)	7.4	19.6	Existing Biomass/WTE 199 195.
Annual Production (GWh)			Existing Wind Power 0 3.73
Building Scale (< 1 MW)			UC Davis Solar 12.25 43.75
Residential PV (1)	10.5	20.0	City of Davis Solar 13.7 35.9
Non-res PV	3.2	16.0	Other Yolo Solar* 0 0
Other (>1MW)	0.0	0.0	Total 225 278.9
Total Annual Production (GWh)	13.7	35.9	* not estimated

integrated Resources Network

Community Solar and Wind

Integrated Resources Network

Integrated Resources Network

Trends 2005 to 2012 **Reference** Case Davis Building Energy Use - IOU Scenario Residential: 2015 2020 2025 2030 2035 electricity usage (51%)* changed by -6.2% since Annual 2005 uilding Electricity 283.4 288.3 295.5 306.0 321 natural gas usage (74%)* has changed by -1.8% since 2005 Residential 137 9 1296 122 4 117 1 115 Non-residential 145.5 158.7 173.1 188.9 206.1 Non-residential: uliding Natural Gas | 119.6 | 118.1 | 116.9 | 114.2 | 108.5 electricity usage (49%)* has changed by 12.4% since 2005 Residential 87.8 86.7 85.5 84.4 83.4 Non-residential 31.8 33.0 34.3 35.6 37.0 Building Solar Heat 0.0 0.8 1.5 3.1 6.1 natural gas usage (26%)* has changed by 5.3% since 2005 Total 402.9 407.1 413.9 423.2 435.8

 Trend information (source energy basis) was provided by the PG&E Green Communities Program

integrated Resources Network

Reference Case Transportation Usage

	2015	2020	2025	2030	2035
	Annual GWh				
Car					
ICEV gasoline	29.8	28.7	26.6	22.9	17.1
EV - elect.	0.6	1.1	2.3	3.7	6.0
FCEV - NG H2	0.0	0.2	0.5	0.9	1.9
FCEV - Solar H2	0.0	0.1	0.4	1.6	3.2
Van/Lt. Truck liq.	39.1	39.1	37.1	33.3	27.9
Van/Lt. Truck elec.	0.0	0.0	0.9	1.8	2.9
Heavy Trk/Bus liq.	30.6	24.5	18.4	12.3	6.1
Heavy Trk/Bus NG	0.0	6.1	12.3	18.4	24.5
Other	0.4	0.4	0.4	0.4	0.4
Totals	100.5	100.3	98.8	95.3	89.9

Reference Case Renewable Power

	2015	2020	2025	2030	203
Solar Target (Annual GWh)	N/A	ΝΆ	N/A	N/A	N/A
Wind Target (Annual GWh)	N/A	N/A	N/A	N/A	N/A
On Site Solar (GWh)	35.9	44.9	52.4	57.1	60.3
Community Solar (GWh)	0.0	0.0	0.0	0.0	0.0
Community Wind (GWh)	0.0	0.0	0.0	0.0	0.0
Total (Annual GWh)	35.9	44.9	52.4	57.1	60.3
Solar Capacity (MW)	19.6	24.9	29.1	31.7	33.5
Wind Capacity (MW)	0.0	0.0	0.0	0.0	0.0

integrated Resources Network

Local Power Cases

Local Power Cases - Renewable Power

Seasonal Supply/Demand Balancing

Supply/Demand Balance

Daily Building Usage Profiles

EV Demand Response Potential

CCAs Can Develop Capacity for Local Planning and Technical Integration. **Estimating Rooftop PV Technical Potential**

So can non-CCA jurisdictions. Building local integrated analysis and planning capacity should matter to the state as well. An increasing share of state managed funds should be allocated to this public purpose.

CCAs Can Develop Capacity for Local Planning and Technical Integration.

Estimating Rooftop PV Pragmatic Potential

So can non-CCA jurisdictions. Building local integrated analysis and planning capacity should matter to the state as well. An increasing share of state managed funds should be allocated to this public purpose.

State/Local CCA Collaboration

Recommended Action: Allocate an increasing share of public purpose program funding to cost shared development of full-time local energy supply planning and management capacity and locally specific integrated energy analysis.

Carbon Footprint Impacts of Local Clean Energy

Concluding Thoughts

CCA programs are constrained by a 20th century electricity service business and regulatory model that may evolve. The extent and direction of their evolution will determine long term outcomes.

Thank you!

gbraun@iresn.org www.iresn.org 916-402-4143

References:

- 1. http://www.municipalsustainability.com/webinars.htm
 - a. January 13, 2015 Davis, California Integrated Energy Analysis
 - b. March 10, 2015 Near Zero Neighborhood Retrofit Plan for Davis, California
 - c. May 19, 2015 Solar Thermal Deployment Plan for Davis, California
- 2. <u>http://californiaseec.org/documents/best-practices/best-practices-for-energy-managers</u>

