Preliminary Integrated Renewable Energy Deployment Analysis for Davis, California

Integrated Resources Network (IRESN) Valley Climate Action Center Gerry Braun (<u>gbraun@iresn.org</u>) January 13, 2015

General Introduction

- Question: Can most of a specific small city's energy needs be supplied by a mix of local solar and wind resources, resulting in a near zero local carbon footprint within two decades?
- Research hypothesis: that truly integrated local renewable energy deployment planning requires locally specific assumptions and data:
 - Energy usage trends
 - Preferred local renewable electricity supply portfolios
 - Energy service options, variations and limitations
 - Usage and supply technology deployment status and progress rates
- Analysis results are location and community specific. The results that follow are <u>preliminary</u>.

Content Outline

- Local energy usage and production
- Scenarios, change drivers and integrated model
- Reference case results
- Local power cases
- Supply/demand balancing
- Comparisons: carbon footprint and economic
- Conclusions and uncharted territory

Introduction – Davis

Statistics (city only)

 Total Population:
 60308

 15 to 19 years:
 11.46%

 20 to 24 years:
 22.71%

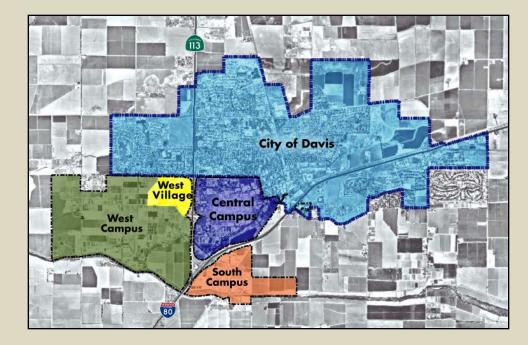
 25 to 34 years:
 14.95%

 Housing units:
 22948

 Owner-occupied:
 44.6%

 Renter-occupied:
 55.4%

 Single fam. homes:
 57%


 Multi-family units:
 43%

 Median Income*:
 \$60,114

* Per household

http://quickfacts.census.gov/qfd/states/06/06181 00.html http://davis.areaconnect.com/statistics.htm

City and University

Source: UC Davis West Village Energy Initiative

Davis Energy Profile - 2012

Table 2. Usage

Davis Energy Usage - 2012					
	GWh	GWh			
Building Electricity		282			
Residential	144				
Non-residential	138				
Building Natural Gas		120			
Residential	88				
Non-residential	31				
Transportation Fuels	84	84			
Total	486	486			

Table 3. Costs and Carbon

Davis Costs and Emissions - 2012						
	Annual	Carbon				
	Energy Bill	Footprint				
	\$ millions	Metric Tons				
Electricity	43.5	66966				
Natural Gas	16.4	63436				
Transportation						
Light vehicles	23.1	59251				
Heavy trucks		41765				
Total	83.1	231419				

Note: End use rather than source energy metrics were used consistently throughout the model and analysis.

Comparative Electricity Statistics

Davis Statistics - 2012										
		Population and Energy						Customer Mix		
City	Pop. (x1000)	Cust.	GWh/yr	MWp	MWh/ cust.	Load Factor	Res %	Com%	Ind %	
Alameda	74.69	30119	389.7	67.2	12.94	0.66	37.2	62.8	0	
Palo Alto	65.68	25710	971.8	170.1	37.80	0.65	16.9	56.6	26.5	
Redding	90.20	36907	804.7	212	21.80	0.43	49.2	49.1	1.7	
Ukiah	15.98	6164	120.1	29	19.48	0.47	36.5	62.1	1.4	
Lompoc	42.92	12966	135.8	23.8	10.47	0.65	44.5	20.9	34.6	
Lodi	62.95	22970	452.7	114.5	19.71	0.45	34.3	35.3	30.4	
Davis	65.99	28403	281.7	66	9.92	0.49	51	49	0	
Sacramento	1400	604053	12074	3000	19.99	0.46	45.7	52.9	1.4	

Note: Sacramento statistics included for reference. Davis GWh/yr includes direct access usage. Data sources include: City of Davis consultant reports, NCPA and PG&E

Local Renewable Power

Davis Solar Electricity Deployment Status						
2012 201						
Sites	1039	1800				
Cumulative Capacity (MW)	7.4	19.6				
Annual Production (GWh)						
Building Scale (< 1 MW)						
Residential PV (1)	10.5	20.0				
Non-res PV	3.2	16.0				
Other (>1MW)	0.0	0.0				
Total Annual Production (GWh)	13.7	35.9				

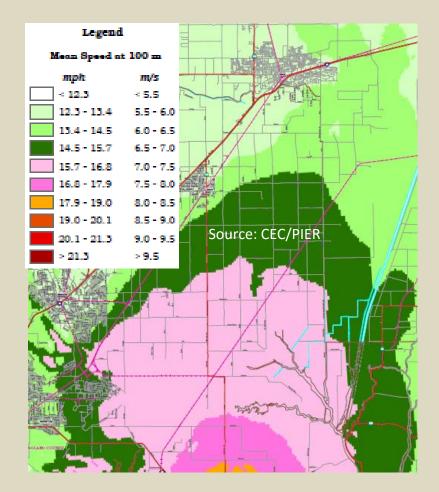
Yolo County Renewable Power Status					
	2012 20				
	Annual GW				
Existing Biomass/WTE	E 199 195.				
Existing Wind Power	r 0 3.73				
UC Davis Solar	12.25	43.75			
City of Davis Solar	is Solar 13.7 35.9				
Other Yolo Solar*	0	0			
Total	225	278.9			
* not ostimated					

* not estimated

Introduction - DavisFREE

DavisFREE Research Topics:

- Integrated Renewable Energy Deployment Scenarios -IRESN
- Use of City GIS Systems for Energy Planning VCAC
- Local Solar Electricity Sites and Resources
 - Rooftop and Parking Area Solar Electricity Potential BIRA
 - Assessment of Solar Garden Sites UCD
- Utility Scale Renewable Energy Opportunities UCD
- Utility Scale Renewable Energy Supply Curves KEMA
- Net Zero Residential Retrofit Program Design BIRA
- Local Solar Thermal Sites and Resources Aztec


Community Solar and Wind

City Controlled Community Solar Sites

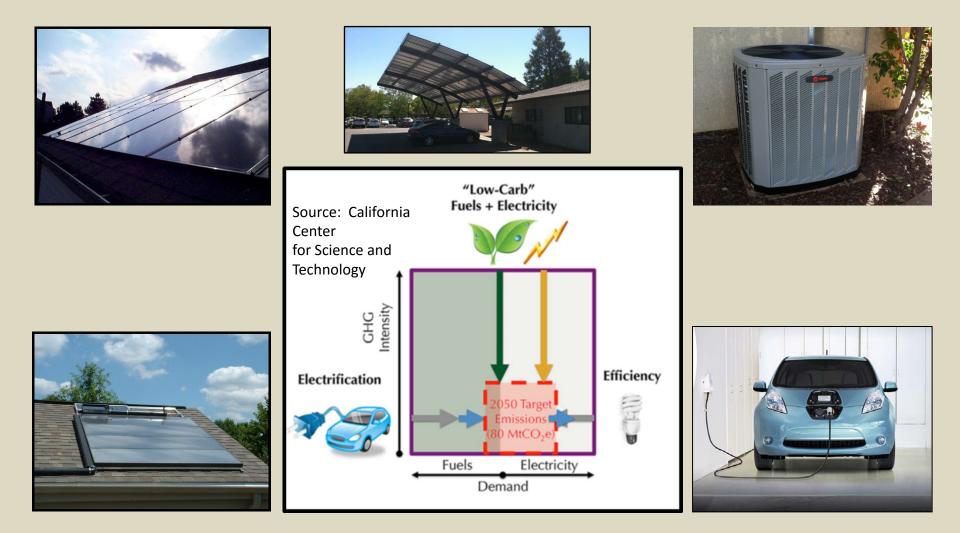
Property	Acres	MW
Davis Municipal Golf Course	149	20
Old City Landfill/PVUSA Site	186	25
Wastewater Treatment Plant	224	30
Howatt/Clayton Ranch	773	103
Wastewater Treatment Plant	2	0
Playfields Park	1	0
Mace Park and Ride	1	0
Pubic Works Corp Yard	4	1
Parks Corp Yard	2	0
Totals		179

Source: City of Davis/UCD

Community Wind Resource Area

Scenarios

- Reference case (IOU): Electricity and natural gas service by incumbent for-profit utility (PG&E)
- Locally accountable electricity supply (CCE): Same as reference case but with a local Community Choice Energy agency sourcing electricity for delivery within the community
- Locally accountable electricity service (POU): Electricity service by a new municipal utility; natural gas service by PG&E



Analysis Guidelines

- Assume no changes in current state policies, IOU business models, and local goals, i.e. Davis's Climate Action Plan and 2050 Carbon Neutrality Goal
- Consider:
 - Solar and EV adoption trends unique to Davis
 - Effects of local planning and operation on energy usage and local renewable deployment
- Determine how changes in each major usage or supply category affect others
- "End Use" vs. "source" energy metrics, i.e. MWe and GWh
- Quantify economic and carbon footprint impacts

Keys to Local Carbon Neutrality

Integrated Resources Network

Model Specification

• For each scenario, estimate:

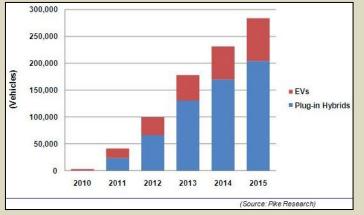
- Energy Usage
- Local Energy Supply
- Usage/Local Supply/Import Balance
- Usage and Supply Variability
- Carbon Footprint
- 2015 baseline, five year updates (2015-2035)
- Assumptions:
 - Specific to Davis
 - Informed by other DavisFREE tasks

Reference Case Building Usage

Trends 2005 to 2012

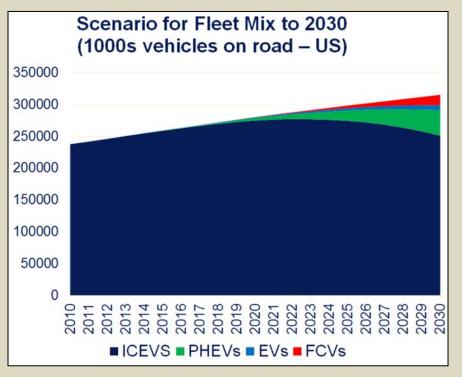
Reference Case

- Residential:
 - electricity usage (51%)*
 changed by -6.2% since
 2005
 - natural gas usage (74%)* has changed by -1.8% since 2005
- Non-residential:
 - electricity usage (49%)*
 has changed by 12.4%
 since 2005
 - natural gas usage
 (26%)* has changed by
 5.3% since 2005


Davis Building Energy Use - IOU Scenario								
	2015 2020 2025 2030 203							
		An	nual G\	Nh				
Building Electricity	283.4	288.3	295.5	306.0	321.1			
Residential	137.9	129.6	122.4	117.1	115.1			
Non-residential	145.5	158.7	173.1	188.9	206.1			
Building Natural Gas	119.6	118.1	116.9	114.2	108.5			
Residential	87.8	86.7	85.5	84.4	83.4			
Non-residential	31.8 33.0 34.3 35.6 37.0							
Building Solar Heat	<u>0.0</u> <u>0.8</u> <u>1.5</u> <u>3.1</u> <u>6.1</u>							
Total	402.9	407.1	413.9	423.2	435.8			

* Trend information (source energy basis) was provided by the PG&E Green Communities Program

Reference Case Transportation Usage


Trends 2010 to 2020

Top: US PHEV and BEV Sales Bottom: FCEV growth projections

Future

EV/PHEV Source: Pike Research FCEV Source: <u>http//:www.platts.com/news-</u> <u>feature/2013/electricpower/powergen/fuelcellcars</u> Future Source: <u>http://steps.ucdavis.edu/files/08-13-2014-08-13-2014-NextSTEPS-</u>

White-Paper-Hydrogen-Transition-7.29.2014.pdf

Integrated Resources Network

Reference Case Transportation Usage

Davis Transportation Energy Use - IOU Scenario							
	2015	2020	2025	2030	2035		
		Ar	าnual GV	Vh			
Car							
ICEV gasoline	29.8	28.7	26.6	22.9	17.1		
EV - elect.	0.6	1.1	2.3	3.7	6.0		
FCEV - NG H2	0.0	0.2	0.5	0.9	1.9		
FCEV - Solar H2	0.0	0.1	0.4	1.6	3.2		
Van/Lt. Truck liq.	39.1	39.1	37.1	33.3	27.9		
Van/Lt. Truck elec.	0.0	0.0	0.9	1.8	2.9		
Heavy Trk/Bus liq.	30.6	24.5	18.4	12.3	6.1		
Heavy Trk/Bus NG	0.0	6.1	12.3	18.4	24.5		
Other	0.4	0.4	0.4	0.4	0.4		
Totals	100.5	100.3	98.8	95.3	89.9		

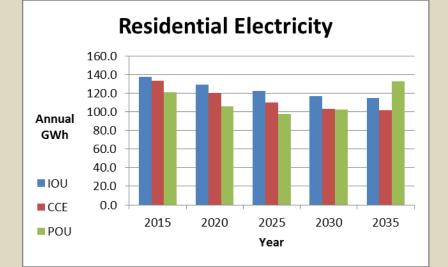
Reference Case Renewable Power

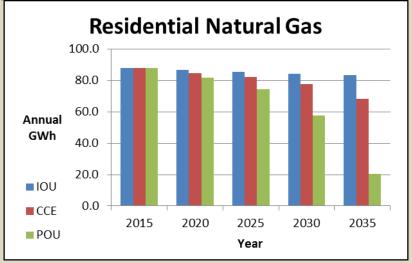
City of Davis Renewable Power Deployment - IOU Scenario								
2015 2020 2025 2030 20								
Solar Target (Annual GWh)	N/A	N/A	N/A	N/A	N/A			
Wind Target (Annual GWh)	N/A	N/A	N/A	N/A	N/A			
On Site Solar (GWh)	35.9	44.9	52.4	57.1	60.3			
Community Solar (GWh)	0.0	0.0	0.0	0.0	0.0			
Community Wind (GWh)	0.0	0.0	0.0	0.0	0.0			
Total (Annual GWh)	35.9	44.9	52.4	57.1	60.3			
Solar Capacity (MW)	19.6	24.9	29.1	31.7	33.5			
Wind Capacity (MW)	0.0	0.0	0.0	0.0	0.0			

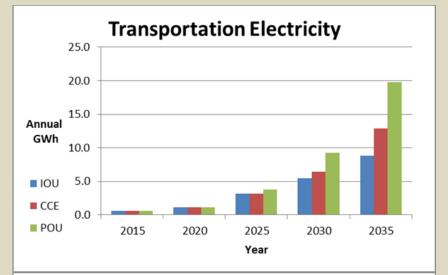
Renewable Power Deployment Trends

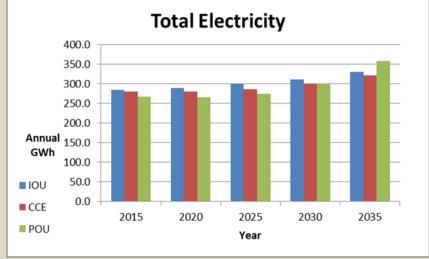
New US Generation Capacity H1 2014

New US Solar PV Capacity GW

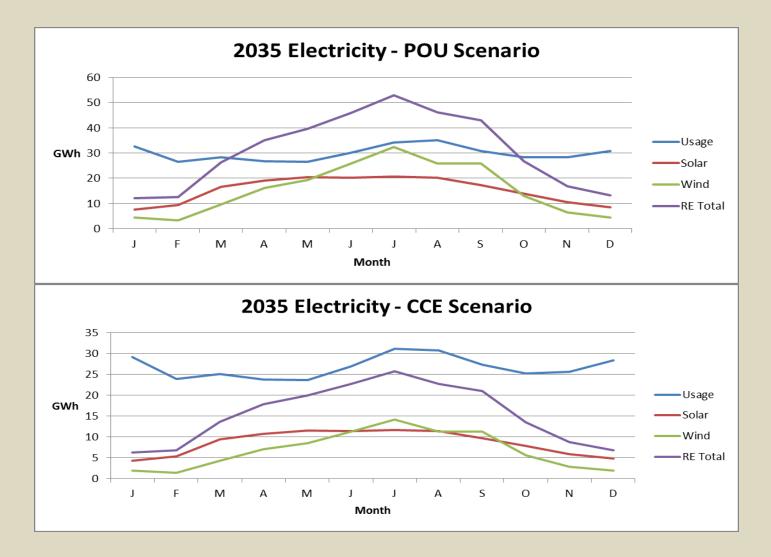

			US	СА
Solar	53%	2014E	6.5GW	3.3GW
Natural Gas	30%	Residential	20%	25%
Coal	0%	Non-Res	30%	10%
Wind	14%	Utility	50%	65%
Other	3%	2018E	9GW	3.1GW
Total	100%	Res	35%	60%
		Non-Res	35%	25%
		Utility	30%	15%

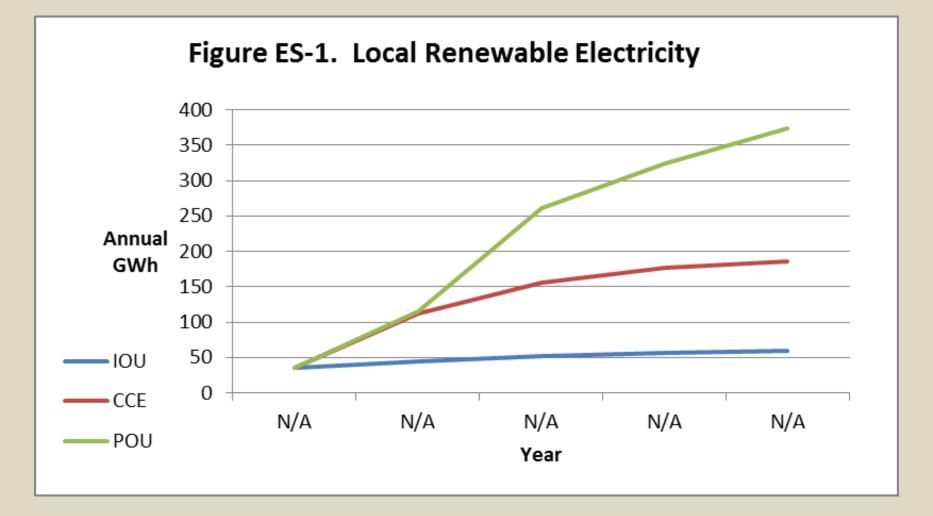

Source: SEIA, GTM Research, Other



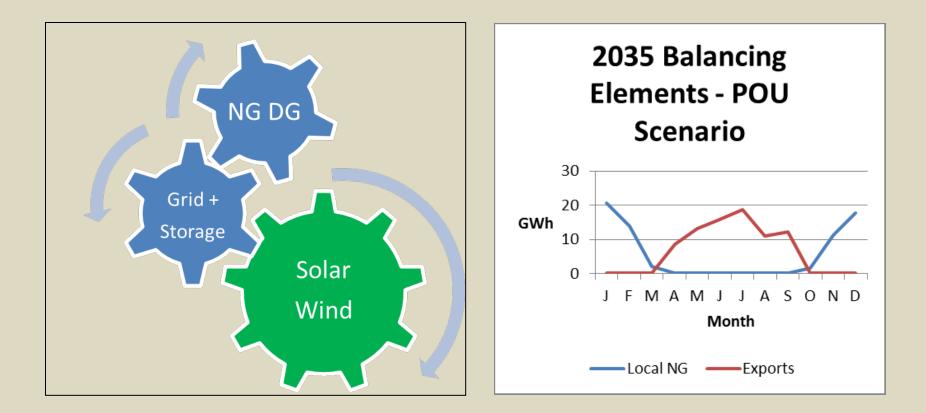

Source: FERC

Local Power Cases - Usage

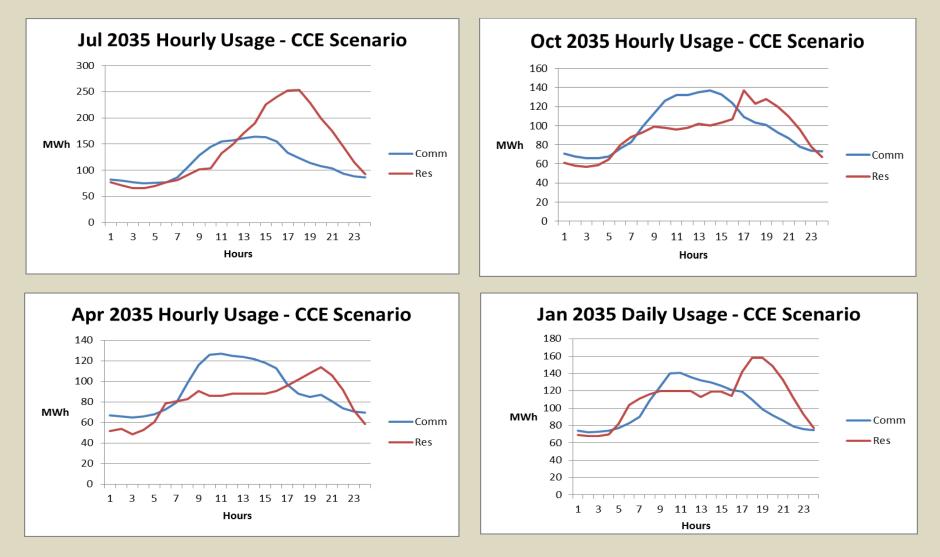




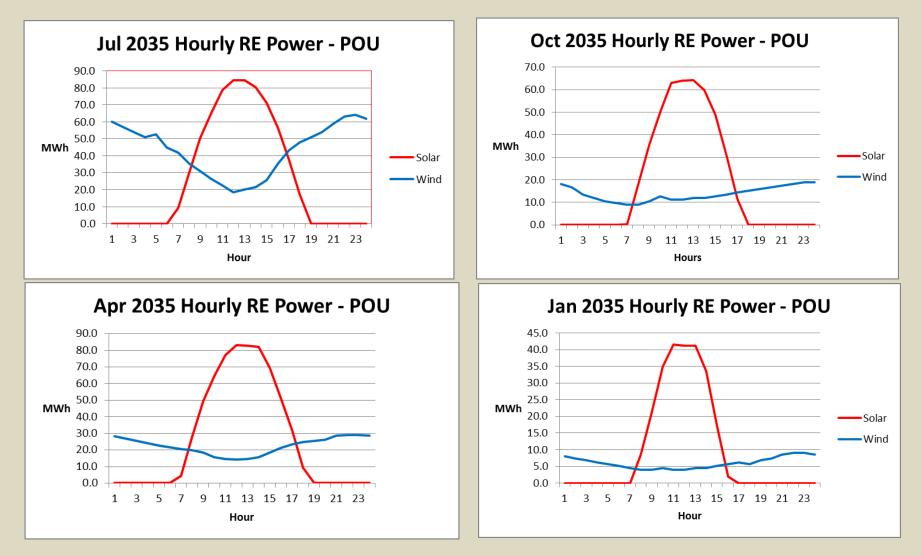
Local Power Cases – Renewable Power



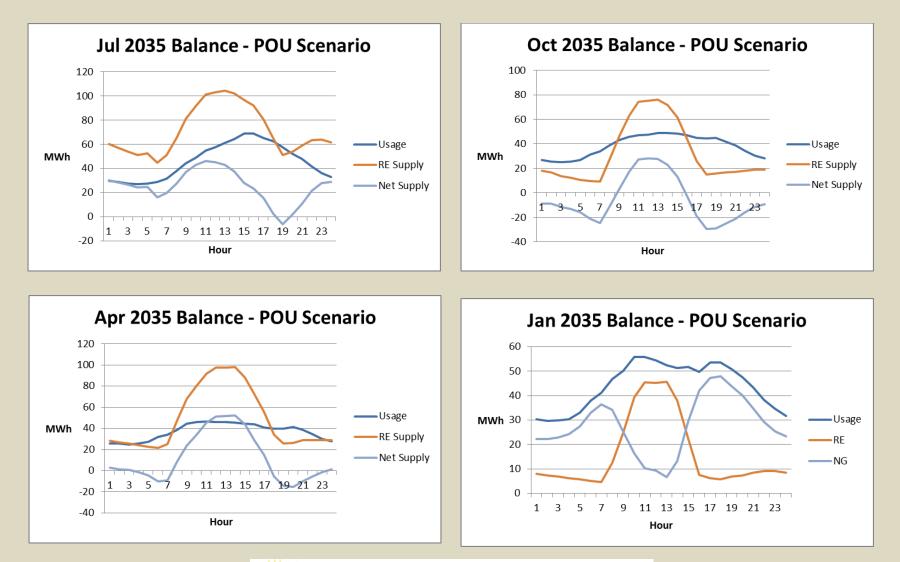
Local Power Cases – RE Electricity



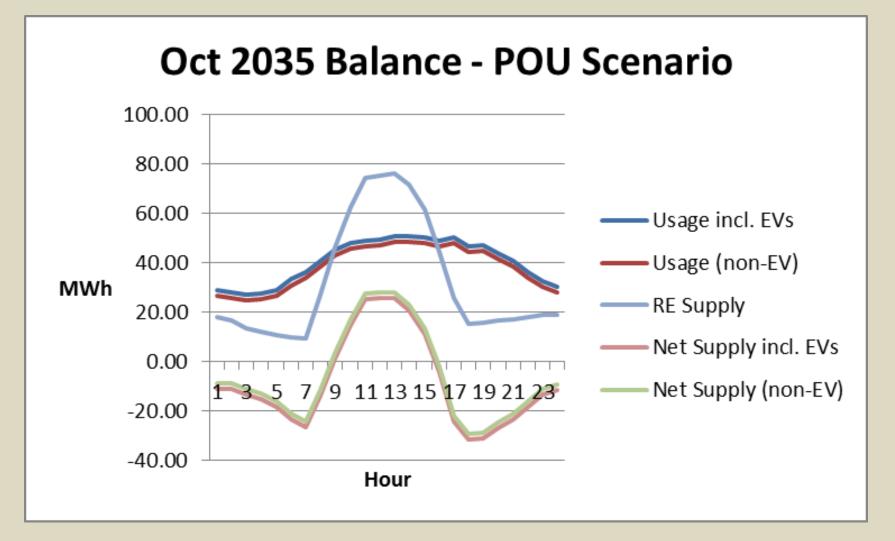
Seasonal Supply/Demand Balancing



Daily Building Usage Profiles

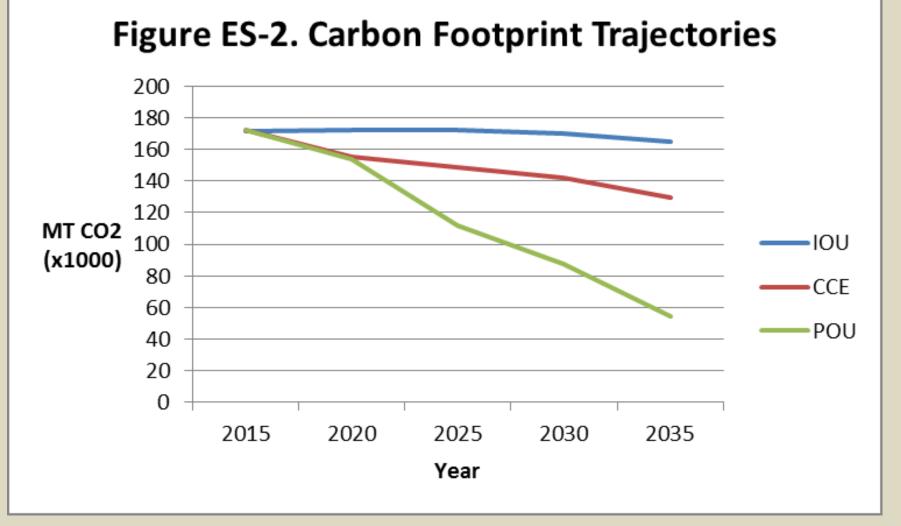


Daily Solar and Wind Profiles


Hourly Building Use Net Supply

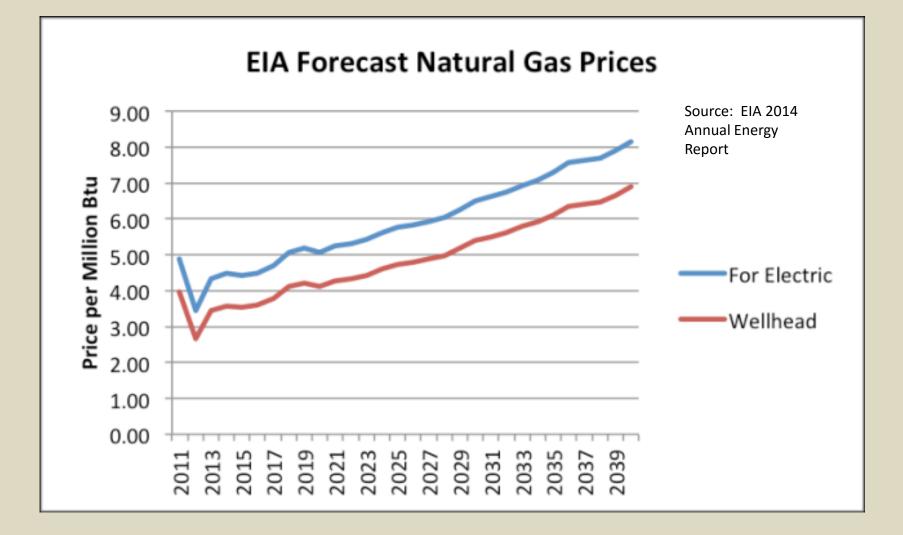
Integrated Resources Network

EV Demand Response Potential



Energy Storage? How Much?

- In 2035 in the POU scenario:
 - 550 MWh average net daily over-supply in July 2035
 - 200 MWh average net daily over-supply in April 2035
- 6000 local EVs averaging 33kWh of storage capacity each = 200MWh of storage capacity capable of multiple daily charge/discharge cycles.
- Combined with an investment in stationary storage, this may suffice, assuming some excess generation can be sold to other small grids.



Carbon Footprint Comparison

Comparative Economics

General Conclusions

- Crunching the numbers for a specific small city based on realistic assumptions and pragmatic scenarios confirms, calibrates and in some cases refutes intuitively reasonable expectations.
- Most importantly, it points to an emerging need increasing numbers of small cities will face in the next decade for locally specific and detailed integrated renewable deployment planning and analysis.
- Locally accountable energy service will be a necessary condition for locally integrated energy planning and deployment, especially where local economic and environmental improvements are targeted.

Specific Conclusions

- Most of Davis, California's energy usage can, realistically and economically, be supplied by a mix of local solar and wind resources, resulting in a near zero local carbon footprint within two decades.
- Some other small cities in northern California are even better positioned to achieve a comparable result, because they plan and operate local electricity infrastructure.
- In the near term, community choice energy frameworks enable development of local solar and wind resources that would not otherwise be developed. The increasing need for integration of regional utility and local planning may become a limiting factor in these cases unless community choice market frameworks become more flexible.

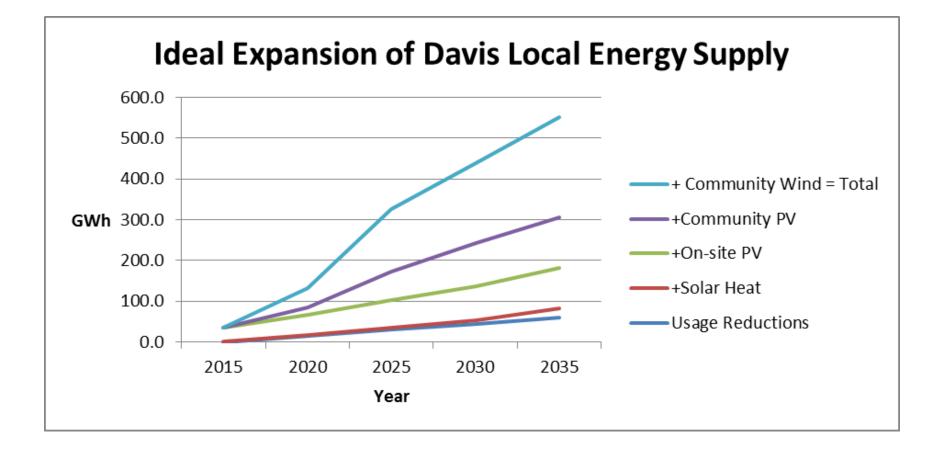
Integrated Resources Network

Uncharted Territory

Further analysis should address:

- The non-residential segment of Davis electricity and natural gas usage and on site electricity and heat supply, including combined heat and power deployment goals and strategies.
- Options for long term finance and ownership of on site power supply and grid infrastructure.
- Preferred evolution of the city's capacity to provide integrated local energy service.
- Infrastructure integration for fuel cell electric vehicle fleets and local solar hydrogen production/distribution.
- Potential for thermal (hot and cold) storage for supply/demand balancing, esp. storage coupled solar plants.
- Impacts of energy storage round trip inefficiencies.

Thank you!


Questions?

gbraun@iresn.org

Integrated Resources Network

General Renewable Deployment Roadmap

Energy Balance – Buildings plus Transportation

Ideal Davis Energy Usage/Supply Balance - 2015 to 2035							
	2015 2020 2025 2030 203						
		Annual GWh					
Unrestrained Usage	503.9	524.9	550.1	581.7	626.8		
Usage Reductions	0.0	-15.5	-30.0	-44.3	-60.4		
Reduced Usage	503.9 509.3 520.1 537.4 566.4						
Local Supply Sources							
Solar Heat	0.5	1.0	4.7	10.0	21.2		
On-site PV	35.2	51.0	67.1	83.2	99.3		
Community PV	0.0	18.0	72.0	104.4	126.2		
Community Wind	0.0 46.7 151.6 198.3 2						
Total Local Supply	35.7 116.7 295.5 395.9 491.6						
Imports	468.2 392.6 224.6 141.5 74.8						
Total Supply	503.9	509.3	520.1	537.4	566.4		

